3.4.57 \(\int \frac {(a+a \sin (c+d x))^m}{\sqrt {e \cos (c+d x)}} \, dx\) [357]

Optimal. Leaf size=86 \[ -\frac {2^{\frac {5}{4}+m} a \sqrt {e \cos (c+d x)} \, _2F_1\left (\frac {1}{4},\frac {3}{4}-m;\frac {5}{4};\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{\frac {3}{4}-m} (a+a \sin (c+d x))^{-1+m}}{d e} \]

[Out]

-2^(5/4+m)*a*hypergeom([1/4, 3/4-m],[5/4],1/2-1/2*sin(d*x+c))*(1+sin(d*x+c))^(3/4-m)*(a+a*sin(d*x+c))^(-1+m)*(
e*cos(d*x+c))^(1/2)/d/e

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2768, 72, 71} \begin {gather*} -\frac {a 2^{m+\frac {5}{4}} \sqrt {e \cos (c+d x)} (\sin (c+d x)+1)^{\frac {3}{4}-m} (a \sin (c+d x)+a)^{m-1} \, _2F_1\left (\frac {1}{4},\frac {3}{4}-m;\frac {5}{4};\frac {1}{2} (1-\sin (c+d x))\right )}{d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[c + d*x])^m/Sqrt[e*Cos[c + d*x]],x]

[Out]

-((2^(5/4 + m)*a*Sqrt[e*Cos[c + d*x]]*Hypergeometric2F1[1/4, 3/4 - m, 5/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c +
d*x])^(3/4 - m)*(a + a*Sin[c + d*x])^(-1 + m))/(d*e))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2768

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {(a+a \sin (c+d x))^m}{\sqrt {e \cos (c+d x)}} \, dx &=\frac {\left (a^2 \sqrt {e \cos (c+d x)}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {3}{4}+m}}{(a-a x)^{3/4}} \, dx,x,\sin (c+d x)\right )}{d e \sqrt [4]{a-a \sin (c+d x)} \sqrt [4]{a+a \sin (c+d x)}}\\ &=\frac {\left (2^{-\frac {3}{4}+m} a^2 \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^{-1+m} \left (\frac {a+a \sin (c+d x)}{a}\right )^{\frac {3}{4}-m}\right ) \text {Subst}\left (\int \frac {\left (\frac {1}{2}+\frac {x}{2}\right )^{-\frac {3}{4}+m}}{(a-a x)^{3/4}} \, dx,x,\sin (c+d x)\right )}{d e \sqrt [4]{a-a \sin (c+d x)}}\\ &=-\frac {2^{\frac {5}{4}+m} a \sqrt {e \cos (c+d x)} \, _2F_1\left (\frac {1}{4},\frac {3}{4}-m;\frac {5}{4};\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{\frac {3}{4}-m} (a+a \sin (c+d x))^{-1+m}}{d e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 83, normalized size = 0.97 \begin {gather*} -\frac {2^{\frac {5}{4}+m} \sqrt {e \cos (c+d x)} \, _2F_1\left (\frac {1}{4},\frac {3}{4}-m;\frac {5}{4};\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{-\frac {1}{4}-m} (a (1+\sin (c+d x)))^m}{d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[c + d*x])^m/Sqrt[e*Cos[c + d*x]],x]

[Out]

-((2^(5/4 + m)*Sqrt[e*Cos[c + d*x]]*Hypergeometric2F1[1/4, 3/4 - m, 5/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*
x])^(-1/4 - m)*(a*(1 + Sin[c + d*x]))^m)/(d*e))

________________________________________________________________________________________

Maple [F]
time = 0.12, size = 0, normalized size = 0.00 \[\int \frac {\left (a +a \sin \left (d x +c \right )\right )^{m}}{\sqrt {e \cos \left (d x +c \right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^m/(e*cos(d*x+c))^(1/2),x)

[Out]

int((a+a*sin(d*x+c))^m/(e*cos(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^m/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate((a*sin(d*x + c) + a)^m/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^m/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((a*sin(d*x + c) + a)^m*e^(-1/2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{m}}{\sqrt {e \cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**m/(e*cos(d*x+c))**(1/2),x)

[Out]

Integral((a*(sin(c + d*x) + 1))**m/sqrt(e*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^m/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)^m*e^(-1/2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^m}{\sqrt {e\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^m/(e*cos(c + d*x))^(1/2),x)

[Out]

int((a + a*sin(c + d*x))^m/(e*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________